prof. Francesco Modafferi - prof. Marco Bianucci

1. Componenti elementari

Contenuti:

Concetto di circuito analogo. Resistore, condensatore ed induttore elettrico. Componenti termici:

resistenza e capacità. Componenti idraulici: resistenza e capacità. Componenti meccanici: smorzatore, molla e massa.

2. Transitori nei circuiti elettrici

Contenuti:

Generalità della funzione esponenziale, andamento della funzione esponenziale al variare di un parametro. Equazioni fondamentali del condensatore e dell'induttore. Risposta normalizzata di un sistema del primo ordine RC all'ingresso a gradino, calcolo diretto della tensione e della corrente.

Risposta normalizzata di un sistema del primo ordine RL all'ingresso a gradino, calcolo diretto della tensione e della corrente.

3. Trasformata di Laplace

Contenuti:

Concetti di base della trasformazione di Laplace, equivalenti trasformati dei componenti circuitali e dei generatori. Calcolo tramite Laplace dell'evoluzione del transitorio della tensione e della corrente nei circuiti RC ed RL del primo ordine sollecitati da sorgenti di tensione continua e sinusoidale.

Componenti di regime, transitoria, libera e forzata della risposta. Concetto di trans-caratteristica, calcolo per un sistema RLC con uscita sul condensatore. Risposta dei sistemi del secondo ordine alla sollecitazione a gradino. Parametri dei sistemi RLC, fattore di smorzamento, relazione tra i tempi caratteristici della risposta e la costante di tempo. Riposta temporale all'ingresso a gradino del sistema del secondo ordine sovra-smorzato, a smorzamento critico, sotto-smorzato. Simulazione e misura delle risposte tramite il programma Multisim. Determinazione della risposta completa del sistema RLC a partire dalla conoscenza di due sole misure caratteristiche. Cenni alla posizione dei poli sul diagramma di Gauss ed al luogo delle radici.

4. Sensori e trasduttori

Concetti generali e parametri caratteristici. Classificazione dei trasduttori. Trasduttore di posizione lineare a potenziometro. Generalità sui trasduttori di temperatura, di luminosità, di posizione, di prossimità.

6. Circuiti digitali

Dispositivi digitali, circuiti integrati, porte logiche, le porte come elementi di controllo, famiglie logiche.

7. Algebra booleana

Funzioni booleane, applicazioni dell'algebra booleana, proprietà e teoremi, implementazione delle funzioni logiche, Mappe di Karnaugh. Esemplificazione di funzioni logiche con le mappe di Karnaugh.

ROBOTICA

8. Programmazione della scheda "Arduino",

Caratteristiche tecniche scheda "Arduino"; caratteristiche principali, tecniche di programmazione, ambiente di sviluppo. Che cos'è Arduino, come accendere un Led con Arduino, pulsante e interruttore che comanda un Led, grandezze analogiche e digitali, ingressi e uscite analogiche e digitali, i potenziometri: regolare tensione e corrente, la regola del partitore, acquisire una grandezza analogica con Arduino, il serial monitor come strumento di debug, uscite analogiche – i segnali PWM. Input e Output analogici: Led e potenziometro, applicazione con un fotoresistore,

acquisire la temperatura con il sensore LM35. Come funziona un display LCD (Liquid Crystal Display). Collegare Arduino a un display LCD, termostato con Arduino

Come fornire un comando ON/OFF ad Arduino, interruttore che comanda un Led, pulsante che comanda un Led.

ATTIVITÀ DI LABORATORIO

□ Software di simulazione

Utilizzo di software dedicato (Multisim) per la simulazione dei sistemi del primo e del secondo ordine. Risposta nel dominio del tempo (transitori), Utilizzo del foglio elettronico Excel.

Attuatori ON/ OFF. Il relè elettromagnetico. Attuatori, relè, transistor come interruttori

ON/OFF. Trasduttore di luminosità con transistor e relè. Ultilizzo su multisimdell' analyzer IV per rilevare le caratteristiche di un BJT.

Simulazione tramite Multisim dei circuiti di condizionamento per i sensori (trasduttori).

Simulazione tramite Multisim di circuiti digitali dalla tabella della verità ai circuiti con porte logiche.

La scheda Arduino per l'acquisizione, visualizzazione e controllo di grandezze elettriche

(tensione e corrente). Realizzazione di un sensore di luminosità con un fotoresistore, acquisire la temperatura con il sensore LM35. Voltimetro con Arduino

PROGRAMMA DI LABORATORIO DI ROBOTICA NELLA CLASSE 3ENET A.S. 2022/23

- Introduzione ad Arduino e realizzazione programma di Led lampeggiante
- Montaggio su basetta bread board di circuito con Led e circuito semaforico con Led, comandato da Arduino
- Data una temporizzazione di accensione di tre Led, eseguire programma con Arduino e montaggio e prova funzionamento circuito pilotato da Arduino
- Programmazione con Arduino per verificare funzionamento potenziometro accendendo in successione 3 Led per diversi livelli di potenziale, montaggio e prova circuito
- Crepuscolare con Arduino, montaggio e prova circuito
- Trasduttore di temperatura LM 35, verifica funzionamento con Arduino
- Esercitazione di misura del tempo di carica di un condensatore con uso di voltmetro e cronometro, montaggio e prova circuito
- Programma con Arduino per rilevare i dati di carica e scarica di un condensatore, montaggio e verifica funzionamento
- Sensore di temperatura LM35: programmare con Arduino che il sistema va in ON o OFF quando supera un valore di tolleranza di temperatura fisso, montaggio e prova circuito
- Comandare un motore con relè pilotato da Arduino, montaggio e prova circuito
- Gestione del display LCD con Arduino, montaggio e prova circuito
- Esercitazione con Arduino per realizzare voltmetro, montaggio e prova circuito
- Rilievo sperimentale della caratteristica di un sensore ad ultrasuoni
- Programmazione di Arduino per misura dei livelli, montaggio e prova circuito

- Montaggio su basetta circuito per comando porta AND con Arduino, montaggio e prova circuito
- Circuito allarme con logica OR realizzato con Arduino, montaggio e prova circuito
- Realizzazione di sistema di allarme con attivazione ritardata, programmazione e realizzazione circuito con Arduino

Lucca, lì 04/06/2023

I proff.

Francesco Modafferi

Marco Bianucci